Myocardial Virus and Gene Expression in SARS-CoV-2 Positive Patients with Clinically Important Myocardial Dysfunction

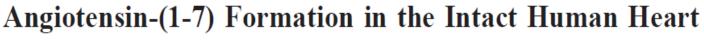
Michael Bristow MD, PhD (CU AMC Cardiology and CVI, PI) Natasha Altman, MD (CU AMC Cardiology and CVI, Clinical PI) John Messenger, MD (CU AMC Cardiology, Co-PI) Thomas Campbell, MD (CU AMC Infectious Disease, Co-I) Ed Gill, MD (CU AMC Cardiology and CVI, Co-I) Amber Berning, MD (Pathology, Co-I) Bristow Laboratory (CU CVI, BSL-2+)

Disclosures

 President & CEO of a biotech company (ARCA biopharma) developing a

drug for COVID-19 Coagulopathy (CAC)

- Drug (rNAPc2) and indication have no direct relationship to this presentation or research program



Angiotensin II Formation in the Intact Human Heart

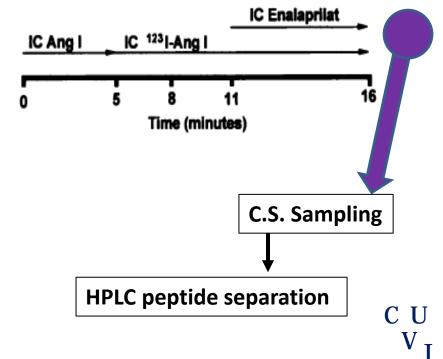
Predominance of the Angiotensin-converting Enzyme Pathway

Lawrence S. Zisman,* William T. Abraham,* Glenn E. Meixell,* Brian N. Vamvakias,[‡] Robert A. Quaife,* Brain D. Lowes,* Robert L. Roden,* Stephanie J. Peacock,* Bertron M. Groves,* Mary V. Raynolds,* Michael R. Bristow,* and M. Benjamin Perryman*

* Department of Medicine, Division of Cardiology, B-139, University of Colorado Health Sciences Center, Denver, Colorado 80262, and [‡]Golden Pharmaceuticals, Golden, Colorado 80401 J. Clin. Invest. 1995. 95:1490–1498.)

In Vivo Dependence on Angiotensin II as Substrate

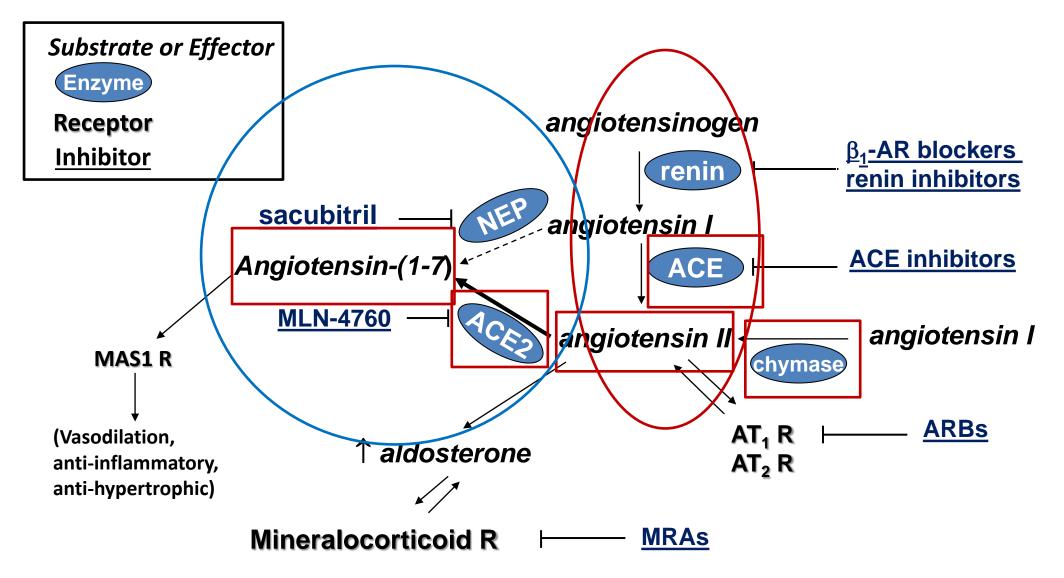
Lawrence S. Zisman, MD; Glenn E. Meixell, PhD; Michael R. Bristow, MD, PhD; Charles C. Canver, MD


Circulation. 2003;108:1679-1681. October 7, 2003

Increased Angiotensin-(1-7)–Forming Activity in Failing Human Heart Ventricles

Evidence for Upregulation of the Angiotensin-Converting Enzyme Homologue ACE2

Lawrence S. Zisman, MD; Rebecca S. Keller, PhD; Barbara Weaver, MS; Qishan Lin, PhD; Robert Speth, PhD; Michael R. Bristow, MD, PhD; Charles C. Canver, MD


> *Circulation*. 2003;108:1707-1712. October 7, 2003 published in abstract form (*Circulation*. 1999;100(suppl I):I-625).

Larry Zisman

The Renin-Angiotensin-Aldosterone System

Bristow MR et al, JBTS Sept 2020. DOI: 10.1016/j.jacbts.2020.06.007; Published online June 25, 2020

CU VI

letters to nature

natureresearch

NATURE | VOL 426 27 NOVEMBER 2003 www.nature.com/nature Article

Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus

Wenhui Li¹, Michael J. Moore¹, Natalya Vasilieva², Jianhua Sui³, Swee Kee Wong¹, Michael A. Berne⁴, Mohan Somasundaran⁵, John L. Sullivan⁵, Katherine Luzuriaga⁵, Thomas C. Greenough⁵, Hyeryun Choe² & Michael Farzan¹

¹Partners AIDS Research Center, Brigham and Women's Hospital, Department o Medicine (Microbiology and Molecular Genetics), ²Perlmutter Laboratory, Pulmonary Division, Children's Hospital, Department of Pediatrics, ³Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA ⁴Tufts University Core Facility, Tufts University School of Medicine, Boston, Massachusetts 02111, USA ⁵Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA

A pneumonia outbreak associated with a new coronavirus of probable bat origin

https://doi.org/10.1038/s41586-020-2012-7

Received: 20 January 2020

Accepted: 29 January 2020 Published online: 3 February 2020

Check for updates

Peng Zhou^{1,5}, Xing-Lou Yang^{1,5}, Xian-Guang Wang^{2,5}, Ben Hu¹, Lei Zhang¹, Wei Zhang¹, Hao-Rui Si^{1,3}, Yan Zhu¹, Bei Li¹, Chao-Lin Huang², Hui-Dong Chen², Jing Chen^{1,3}, Yun Luo^{1,3}, Hua Guo^{1,3}, Ren-Di Jiang^{1,3}, Mei-Qin Liu^{1,3}, Ying Chen^{1,3}, Xu-Rui Shen^{1,3}, Xi Wang^{1,3}, Xiao-Shuang Zheng^{1,3}, Kai Zhao^{1,3}, Quan-Jiao Chen¹, Fei Deng¹, Lin-Lin Liu⁴, Bing Yan¹, Fa-Xian Zhan⁴, Yan-Yi Wang¹, Geng-Fu Xiao¹ & Zheng-Li Shi¹

Open access

Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.

C U

As of 4/6/20 (AHA grant submission):

- Myocardial injury & dysfunction minimal reports, mechanism uncertain
 - Myopericarditis by CMR (1 report, no tissue)
 - 1 heart autopsy biopsy, SCD in severe lung
 Dz, "no obvious histologic changes" in heart
- Myocardial injury evidence by 个 hs-cTn, associated with adverse outcomes
- ACE2 is CoV-2 receptor for cell entry, 个 in failing/remodeled human LVs and in animal models Rxd with ARBs

Myocardial Virus and Gene Expression in SARS-CoV-2 Positive Patients with Clinically Important Myocardial Dysfunction: *Aims*

Aim 1. Detection of CoV-2 in cardiac myocytes.

- N = 10, EMBx
- Histopathology including EM, patients with evidence of CoV-2 myocardial involvement
- RT-PCR for viral genome

Aim 2. Determine the degree of inflammatory reaction vs. direct myocardial injury.

- Histopathology
- Cytokine gene expression, circulating levels

Aim 3. Measure mRNA expression of the binding target (ACE2), proteases and integrins that have

been shown to be key to cellular entry in non-cardiac cells.

- mRNA abundance by RNA-Seq and microarray
- ACE2, ACE, NPPB, α5 ITG, TF, mRNA abundance by RT-PCR rapid turnaround; circulating ACE2, ACE, ANG II, TF

Aim 4. Measure mRNA expression of candidate and global genes, and compare results to nonfailing controls and reduced LVEF nonischemic dilated cardiomyopathy (NDC) patients

- mRNA abundance by RNA-Seq and microarray, n = 10 patients with CoV-2 myocardial involvement
- 12 NF, 12 F/NDC septal biopsies from explanted hearts; previous EmBx data (4 NF, 46 F/NDC)

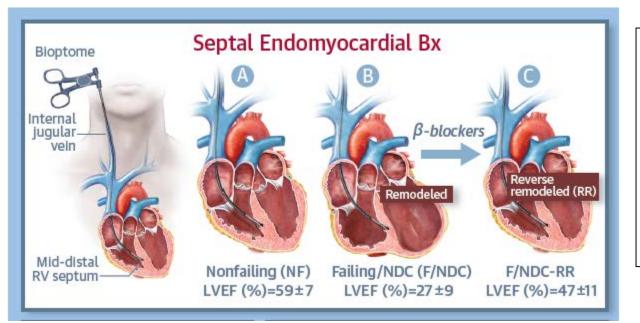
Myocardial Virus and Gene Expression in SARS-CoV-2 Positive Patients with Clinically Important Myocardial Dysfunction: *Revised Entry Criteria* (10/1/20)

Inclusion, Hospitalized Patients

- In or recently in ICU, PCR + for CoV-2, Age ≥18, COVID-19 myocardial involvement in the DDx, stable enough for cardiac catheterization
- LVEF <50% OR

TnI ≥0.05 ng/ml OR

global longitudinal strain > -16 OR

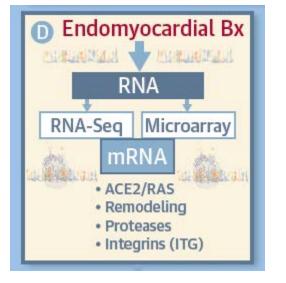

ST-T changes suggesting STEMI, NSTEMI or myopericarditis with patent coronary arteries OR new onset sustained VT or VF

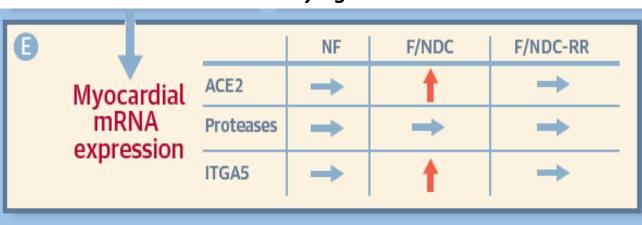
• Patient or authorized representative able to give informed consent

Inclusion, Outpatients

- In ICU in the past 3 mos, PCR + for CoV-2, Age ≥18, COVID-19 myocardial involvement in the DDx, stable enough for cardiac catheterization
- LVEF, TnI, GLS, ST-T and VT/VF criteria same as for hospitalized patients
- Patient able to give informed consent

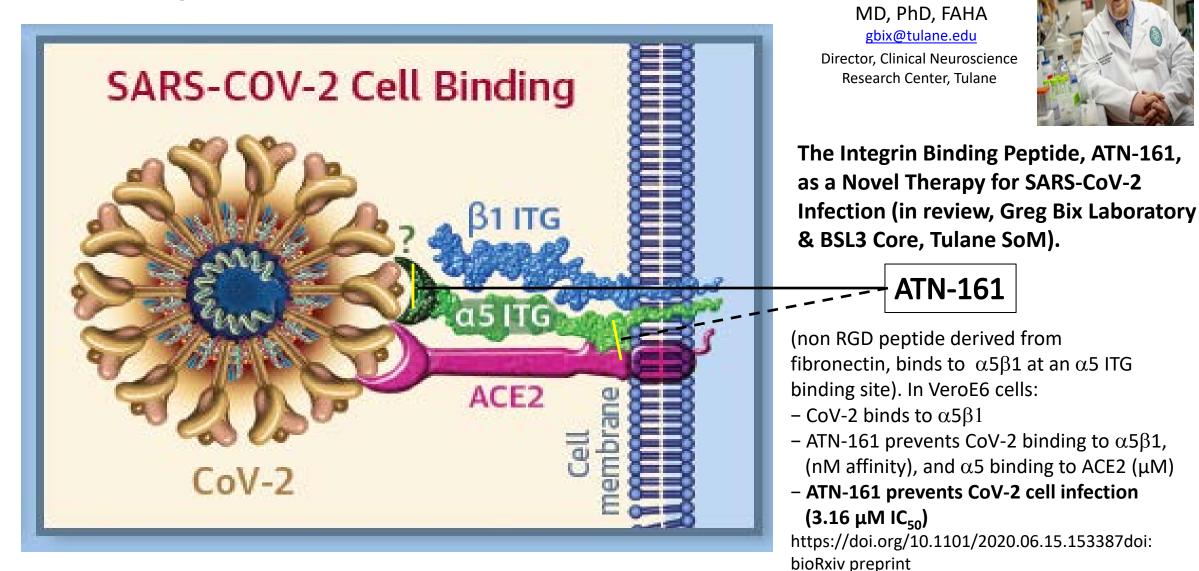
Dynamic Regulation of SARS-CoV-2 Binding and Cell Entry Mechanisms in Remodeled Human Ventricular Myocardium




Highlights:

- 1. Cellular receptor for CoV-2 (ACE2) and 5 proteases previously implicated in membrane fusion are expressed.
- 2. ACE2 upregulated \approx 2 fold in remodeled LV, proteases NSC.
- 3. ACE2 normalizes on reverse remodeling independent of ACEIs or ARBs.
- 4. ITGA5, which encodes an integrin (α 5 ITG) that binds to ACE2 and to a motif (RGD) in the CoV-2 spike protein receptor receptor binding domain, is upregulated in remodeled LV and normalizes on reverse remodeling, and is a candidate for facilitating or mediating CoV-2 cell binding and entry.

Thus upregulated CoV-2 cell binding mechanisms may explain heightened risk of COVID-19 in patients with underlying heart muscle disease.


CU

Bristow MR et al, JBTS Sept 2020. DOI: 10.1016/j.jacbts.2020.06.007; Published online June 25, 2020

Integrin α 5 β 1 facilitates CoV-2 binding and cell entry

Bristow MR et al, JBTS Sept 2020. DOI: 10.1016/j.jacbts.2020.06.007 Published online June 25, 2020 CU VI

Gregory Bix,

Myocardial Involvement in COVID-19: Summary so far

- Clinically significant myocardial involvement in COVID-19 patients occurs with uncertain but not uncommon incidence, and is important to detect and monitor following the acute infection
- Myocardial injury, most commonly detected by an elevation in hs-cTn, may be of several types
 - Inflammation (myocarditis); probably over Dx'd based on uncontrolled CMR studies
 - Cytopathic effects in cardiac myocytes including myofibril disruption and loss, with no or little evidence of inflammation
 - Vascular involvement, including microthrombi
- ACE2 is upregulated in ventricular remodeling similar to NPPB, doesn't appear to be modifiable by RASi therapy and may be a major reason for worse outcomes in some patients
- Integrin $\alpha 5$ or its $\alpha 5\beta 1$ dimer is a co-receptor for CoV-2, and is a potential therapeutic target in COVID-19