Repurposing Drugs for Treatment of Cardiovascular Disease Caused by SARS-CoV-2

Joseph Loscalzo, MD, PhD Brigham and Women's Hospital | Harvard Medical School

November 13, 2020

Disease Modules in the Interactome

Curation of all experimentally validated protein-protein interactions in the human cell that form the human interactome

- Binary PPI (Y2H, IntAct, MINT)
- Regulatory (TRANSFAC)
- Metabolic (CORUM)
- Kinase and Signaling Networks
- Literature Curation (IntAct, MINT, BioGrid, HPRD)

--Menche, et al., Science 2015;347:1257601

Disease Module Derivation: Cerebrovascular Disease

- Identify disease phenotype of interest (CBVD).
- Ascertain disease network components ('seed' proteins).
- Map 'seed' proteins to interactome.
- Identify disease module(s) within interactome network.

CBVD Proto-module

--Wang & Loscalzo, J Mol Biol 2018;430:2939-50

The interactome provides the 'missing links' among disease-associated proteins in the disease module.

COVID-19 Disease Module: The Pulmonary Covidome

- 332 human proteins to which 26 SARS-CoV-2 proteins bind (*Gordon et al., Nature, 2020*), mapped to the interactome
- Repurposing candidates must target proteins within the covidome or very near it.

COVID-19 Disease Module: The Cardiac Covidome

- 332 human proteins to which 26 SARS-CoV-2 proteins bind *(Gordon et al., Nature, 2020)*, mapped to the interactome
- Repurposing candidates must target proteins within the covidome or very near it.

COVID-19 Disease Module: Overlap with Obesity Module

- One of four disease modules that overlap with the covidome
- Nominal statistical significance: p=0.06

Two Strategies for Drug Target Identification

Network-based Drug Target ID

Network-based Drug Repurposing: The Proximity Hypothesis

COVID-19 Disease Module and Interactions

https://arxiv.org/abs/2004.07229

General Approach to Drug Target Identification in the Covidome

Combined ROC

Individual methods offer complementary information harnessed by the combined ranking algorithm for optimal predictive power.

Network AI 4 pipelines

Curated Drug Ranking & HTS

--Drugs in clinical trials shown in green--greater intensity indicates greater number of trials.

--Drugs with reported positive effects (e.g., ritonavir, ivermectin) appear in list.

--We cannot tell whether a drug on this list will suppress the infection or worsen it; in vitro testing is essential.

--This list does not provide information on other drug targets, which may lead to adverse effects (such as with hydroxychloroquine).

--HTS for SARS-CoV-2 in vitro viricidal activity yielded ~50% success rate (far greater than the <1% hit rate of random screenings).

) # of Clinical trials from ClinicalTrials.gov

	Drug	C-rank	Drug	C-rank	Drug	C-rank
20	Ritonavir	1	Mesalazine	69	Sulfanilamide	265
	Isoniazid	2	Pentamidine	92	Hydralazine	269
	Troleandomycin	3	Verapamil	98	Gemfibrozil	281
	Cilostazol	4	Melatonin	109	(4) Ruxolitinib	284
(76	Chloroquine	5	Griseofulvin	112	Propranolol	297
	Rifabutin	6	Auranofin	118	Carbamazepine	301
	Flutamide	7	1 Atovaquone	124	Doxorubicin	309
2	Dexamethasone	8	Montelukast	131	Levothyroxine	329
	Rifaximin	9	Romidepsin	138	Dactinomycin	335
	Azelastine	10	1 Cobicistat	141	Tenofivir	338
	Folic Acid	16	(17) Lopinavir	146	Tadalafil	339
	Rabeprazole	27	Pomalidomide	155	Doxazosin	367
	Methotrexate	32	Sulfinpyrazone	157	Rosiglitazone	397
	Digoxin	33	1 Levamisole	161	Aminolevulinic acid	398
	Theophylline	34	Calcitriol	164	Nitroglycerin	418
	Fluconazole	41	 Interferon-β-1a 	173	Metformin	457
\sim	Aminoglutethimide	42	Praziquantel	176	(1) Nintedanib	466
(67)	Hydroxychloroquine	44	1 Ascorbic acid	195	Allopurinol	471
0	Methimazole	47	Fluvastatin	199	Ponatinib	491
1	Ribavirin	49	 Interferon-β-1b 	203	 Sildenafil 	493
1	Omeprazole	50	Selegiline	206	Dapagliflozin	504
	Bortezomib	53	1 Deferoxamine	227	Nitroprusside	515
	Leflunomide	54	Ivermectin	235	Cinacalcet	553
	Dimethylfumarate	55	1 Atorvastatin	243	Mexiletine	559
4	Colchicine	57	Mitoxantrone	250	Sitagliptin	706
	Quercetin	63	Glyburide	259	Carfilzomib	765
	Mebendazole	67	2 Thalidomide	262	1 Azithromycin	786

Creating a Comprehensive Atlas of Human Protein-Drug (Small Molecule) Interactions

Lawrence Livermore National Laboratory—Sierra System (near exa-scale)

Center for Accelerated Drug Discovery

Specific interactions between drugs and protein targets will be used to map the drug targets to the PPI, which should yield comprehensive information on the breadth of disease treatments and adverse effects.

Ongoing Work

--Test top hits in human cell assays with SARS-CoV-2: HuH-7, Calu-3, pericytes, ECs, CMs.

--Study repurposed drug combinations.

--LLNL--CADD high-performance computing analysis of potential repurposed drug targets in or near the covidome

--Proposed human trials

Acknowledgements

- Laszlo Barabasi
- Rob Davey
- Rishi Desai
- Felice Lightstone
- Joerg Menche
- Sebastian Schneeweiss
- Marinka Zitnik

- Feixiong Cheng
- Deisy Morselli Gysi
- Italo Do Valle
- Vlad Elgart
- Dina Ghiassian
- Diane Handy
- Laurel Lee
- Jane Leopold
- Jun-Seop Song
- Ruisheng Wang
- Jerry Zhu